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Abstract

The Cpp-Taskflow project addresses the long-standing ques-

tion: How can we make it easier for developers to write

parallel and heterogeneous programs with high performance

and simultaneous high productivity? Cpp-Taskflow develops

a simple and powerful task programming model to enable

efficient implementations of heterogeneous decomposition

strategies. Our programming model empowers users with

both static and dynamic task graph constructions to incorpo-

rate a broad range of computational patterns including hy-

brid CPU-GPU computing, dynamic control flow, and irreg-

ularity. We develop an efficient heterogeneous work-stealing

strategy that adapts worker threads to available task paral-

lelism at any time during the graph execution. We have

demonstrated promising performance of Cpp-Taskflow on

both micro-benchmark and real-world applications. As an

example, we solved a large machine learning workload by

up to 1.5× faster, 1.6× less memory, and 1.7× fewer lines

of code than two industrial-strength systems, oneTBB and

StarPU, on a machine of 40 CPUs and 4 GPUs.

1 Introduction

Modern scientific computing relies on a heterogeneous mix

of computational patterns, domain algorithms, and special-

ized hardware to achieve key scientific milestones that go

beyond traditional capabilities. However, programming these

applications often requires complex expert-level tools and

a deep understanding of software methodologies. Specifi-

cally, the lack of a suitable software environment that can

overcome the complexity of programming large parallel and

heterogeneous systems has posed a significant barrier for

many organizations to facilitate transformational discover-

ies [50]. Decades of research in high productivity computing

has yielded methods and languages that offer either program-

mer productivity or performance scalability, but rarely both

simultaneously [3]. Neither programming models nor run-

times, despite some improvements in domain-specific prob-

lems such as machine learning, are mature enough to allow

us to migrate generic applications to heterogeneous targets

in a timely manner.

Cpp-Taskflow v2 is a general-purpose task programming

system to streamline the creation of parallel and heteroge-

neous applications comprising CPUs, GPU, and custom ac-

celerators. We have based Cpp-Taskflow v2 on the state-

of-the-art manycore programming system, Cpp-Taskflow

v1 [27], which has extensive user experience in the circuit de-

sign industry [28, 29, 41, 42, 44, 51], and generalized its idea

to heterogeneous computing with relative ease of program-

ming. Hereafter, Cpp-Taskflow refers to v2 unless otherwise

stated. 1 Cpp-Taskflow explores effective tradeoff between

programming productivity, solution generality, and perfor-

mance scalability. We summarize three major contributions

of Cpp-Taskflow as follows:

• Expressive, powerful programming model. We enable

developers to efficiently implement parallel and heteroge-

neous decomposition strategies using task graph models.

Our model empowers users with both static and dynamic

task graph constructions to incorporate a broad range of

computational patterns using an expressive, unified appli-

cation programming interface (API). The power of our ex-

pressiveness lets developers perform rather a lot of work

without writing a lot of code. Our user experiences lead us

to believe that, although it requires some effort to learn, a

programmer can master our APIs needed for many appli-

cations in just a few hours.

• General control flow. We support general control flow

that goes beyond the capability of conventional directed

acyclic graph (DAG) models. Developers benefit from

the ability to make rapid control-flow decisions using our

conditional tasking interface. Applications can describe

loops, nested cycles, branches, or non-deterministic deci-

sion points together with other task constructs in a uniform

graph entity. In case where dynamic behavior is frequent,

such as optimization and branch and bound, developers

can efficiently overlap tasks both inside and outside the

path of decision making.

• Heterogeneous work stealing. We develop an efficient

work-stealing strategy to adapt worker threads to dynam-

ically generated task parallelism at any time during the

1Cpp-Taskflow: https://https://github.com/cpp-taskflow/.
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graph execution. Our strategy prevents the graph execution

from underutilized threads that is harmful for performance,

while avoiding excessive waste of thread resources when

available tasks are scarce. The result largely improves the

overall system performance, including latency, energy ef-

ficiency, and throughput. Our strategy is generalizable to

arbitrary heterogeneous domains.

We have evaluated Cpp-Taskflow on both micro-

benchmark and real-world applications and demonstrated its

promising performance over existing programming systems.

As an example, Cpp-Taskflow solved a large-scale circuit

placement problem by up to 17% faster, 1.3× fewer memory,

2.1× less power consumption, and 2.9× higher throughput

using 1.9× fewer lines of code than two industrial-strength

systems, oneTBB and StarPU, on a machine of 40 CPUs

and 4 GPUs. We believe Cpp-Taskflow stands out as a

unique system given the ensemble of software tradeoffs and

architecture decisions we have made.

We organize the paper as follows: Section 2 describes the

motivation of Cpp-Taskflow. Sections 3 and 4 introduce the

programming model of Cpp-Taskflow and its system runtime.

Section 5 demonstrates the experimental results on micro-

benchmark and realistic applications. Section 6 describes the

related work. Finally, we draw acknowledgment and conclu-

sion in Sections 7 and 8.

2 Motivation: Parallelizing VLSI CAD

The key motivation behind Cpp-Taskflow is our (“author’s

research team and industrial partners") research and devel-

opment (R&D) experience in parallelizing computer-aided

design (CAD) tools for very large-scale integration (VLSI)

systems. Our area of expertise yields promising and realis-

tic insights for the pros and cons of existing toolchains, and

why we need a new programming system to advance the

state of the art. In fact, CAD has solved many of the most

difficult computational problems in the world. The compu-

tational challenges we address are representative of a wide

range of scientific computing applications.

The semiconductor industry never stops seeking to reduce

the design time and effort in integrated circuit (IC) imple-

mentation that incorporates billions of transistors [19, 31].

The recent DARPA Intelligent Design of Electronic Assets

(IDEA) program directly called out the need for a no hu-

man in the loop, 24-hour design framework for IC imple-

mentation [2]. A central theme is the core CAD algorithms

must incorporate new parallel paradigms to allow more ef-

ficient design space exploration and optimization. This is an

extremely challenging job, particularly, for R&D. Figure 1

shows a canonical CAD flow and highlights computational

problems in the layout generation stage. CAD spans vari-

ous computing disciplines and makes essential use of dy-

namic control flow and irregular patterns. Each problem has

Figure 1: Cpp-Taskflow is motivated to address the compu-

tational challenges in parallelizing VLSI CAD. CAD spans

various computing disciplines and makes essential use of dy-

namic control flow and irregular computational patterns, with

all the difficulties it entails.

unique computational patterns and performance characteris-

tics, both of which require very strategic decompositions to

benefit from parallelism. The resulting task graph in terms

of encapsulated function calls and task dependencies are ex-

tremely large and complex. Programming these tasks in a

scalable manner has been one greatest hurdle to overcome

for reasonable turnaround time and performance [22, 46, 48].

2.1 Issues of Existing Programming Systems

Over the past five years, we have invested a lot of R&D effort

in existing task programming systems [6,10,11,18,21,24,32].

Each of these systems has its own pros and cons and deserves

a reason to exist. In our use case, however, few of them can

effectively answer the question: how can we program large

heterogeneous CAD workloads with high performance and

simultaneous high programming productivity? We highlight

three major issues. First, existing frameworks are disadvan-

tageous from an ease-of-use standpoint. Users often need

to sort out many distinct notations and library details before

implementing a heterogeneous algorithm. Second, existing

models mostly rely on DAG models to define tasks and de-

pendencies. Very few of them support general control flow

in task parallelism. Third, existing scheduling algorithms are

good at either CPU- or GPU-intensive workloads, but rarely

both simultaneously. Neither are they generalizable to arbi-

trary heterogeneous domains.
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2.2 Need for a New Programming System

Based on many years of research, we conclude that a new

programming solution is needed. While being inspired by

parallelizing CAD, we aim for a general-purpose C++ task

graph programming system to streamline parallel and hetero-

geneous programming and benefit a wide variety of scientific

computing. We target on a single heterogeneous node com-

prising manycore CPUs, GPUs, and custom accelerators. We

are interested in irregular workloads of intensive CPU-GPU

dependent tasks and dynamic control flow, where existing

frameworks fail to handle efficiently. We do not devote effort

to simplifying kernel programming but focus on heteroge-

neous tasking that affects the overall system performance to

a large extent. Our model is compatible with existing frame-

works and together we can enable proliferation of new algo-

rithms and methodologies in face of future heterogeneity.

3 Unified Programming Model

We discuss the programming model of Cpp-Taskflow in five

types, static task, dynamic task, composable task, condition

task, and cudaFlow task. These tasks are associated with

each other to represent a generic task dependency graph

(TDG). The API used for one task type is nearly applicable

for the other task types. Developers need not to learn a differ-

ent set of API and can pick up the knowledge at a fast pace.

We help developers quickly write large parallel and

heterogeneous programs with high performance

scalability and simultaneous high productivity.

— Project Mantra

3.1 Static Tasking

Static tasking captures the static parallel structure of a de-

composition strategy and is defined only by the program it-

self. It has a flat task hierarchy and cannot spawn new tasks

from a running task graph. Listing 1 demonstrates an exam-

ple Cpp-Taskflow program. The code explains itself. The pro-

gram creates a TDG of four tasks, A, B, C, and D. The depen-

dency constraints state that task A runs before task B and task

C, and task D runs after task B and task C. There is neither ex-

plicit thread managements nor complex lock controls in the

code.

t f : : E x e c u t o r e x e c u t o r ;

t f : : T askf low t a s k f l o w ;

a u t o [A, B , C , D] = t f . emplace (

[ ] ( ) { s t d : : c o u t << " Task A\ n " ; } ,

[ ] ( ) { s t d : : c o u t << " Task B \ n " ; } ,
[ ] ( ) { s t d : : c o u t << " Task C \ n " ; } ,

[ ] ( ) { s t d : : c o u t << " Task D\ n " ; }

) ;

A. p r e c e d e (B , C ) ; / / A r u n s b e f o r e B and C

B . p r e c e d e (D ) ; / / B r u n s b e f o r e D

C . p r e c e d e (D ) ; / / C r u n s b e f o r e D

e x e c u t o r . run ( t a s k f l o w ) . w a i t ( ) ;

Listing 1: A static TDG in Cpp-Taskflow.

Cpp-Taskflow is object-oriented. A task in Cpp-Taskflow

is defined as a callable object for which the operation

std::invoke is applicable. A taskflow object is the gateway

to create a TDG and submit it to an executor that manages a

set of worker threads to run tasks. Each time users create a

task, the taskflow adds a node to the present TDG and returns

a task handle. A task handle is a lightweight class object that

wraps up a particular node in a graph and provides an extensi-

ble layer to modify task attributes. Each node has a general-

purpose polymorphic function wrapper to store and invoke

any callable target (task) given by users. Hereafter, we use

“task A” to represent the task stored in node A.

3.2 Dynamic Tasking

Dynamic tasking refers to the creation of a TDG during the

execution context of a task. Dynamic tasks are created from

a running TDG. These tasks are spawned from a parent task

and are grouped together to form a TDG called subflow. The

same methods defined for static tasking are all applicable for

dynamic tasking. Figure 2 shows an example of dynamic

tasking. The TDG has four static tasks, A, C, D, and B. The

precedence constraints force task A to run before tasks B and

C, and task D to run after tasks B and C. During the execution

of task B, it spawns another TDG of three tasks B1, B2, and

B3 (marked as cyan), where task B1 and task B2 run before

task B3. In Cpp-Taskflow, tasks B1, B2, and B3 are grouped

to a subflow parented at task B.

Dynamic Tasking (B spawns B1, B2, and B3)

A

B

C

D

B3

B2

B1

Figure 2: A TDG of four static tasks (A, B, C, and D) and

three dynamic tasks (B1, B2, and B3).

a u t o [A, C , D] = t a s k f l o w . emplace (

[ ] ( ) { s t d : : c o u t << "A\ n " ; } ,

[ ] ( ) { s t d : : c o u t << "C \ n " ; } ,
[ ] ( ) { s t d : : c o u t << "D\ n " ; }

) ;

a u t o B = t f . emplace ( [ ] ( t f : : Subf low& subf low ) {

s t d : : c o u t << "B\ n " ;
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a u t o [ B1 , B2 , B3 ] = subf low . emplace (

[ ] ( ) { s t d : : c o u t << "B1 \ n " ; } ,

[ ] ( ) { s t d : : c o u t << "B2 \ n " ; } ,

[ ] ( ) { s t d : : c o u t << "B3 \ n " ; }

) ;
B3 . s u c c e e d ( B1 , B2 ) ;

} ) ;

A. p r e c e d e (B , C ) ;

D. s u c c e e d (B , C ) ;

Listing 2: Cpp-Taskflow code of Figure 2.

Listing 2 shows the Cpp-Taskflow code in Figure 2. A dy-

namic task accepts an argument of type tf::Subflow that is

created by the executor and passed to the execution of task

B. A subflow inherits all graph building blocks from static

tasking. By default, a spawned subflow joins its parent task,

forcing a subflow to follow the subsequent dependency con-

straints of its parent task. Depending on applications, users

can detach a subflow from its parent task using the method

detach, allowing its execution to flow independently. A de-

tached subflow will eventually join the taskflow.

3.3 Composable Tasking

Composable tasking enables developers to define task hier-

archies and create large TDGs from composition of modular

and reusable blocks that are easier to optimization. Graph

decomposition is a key element to improve productivity and

scalability of programming large parallel workloads. Figure

3 gives an example of a TDG using these three constructs.

The top-level taskflow defines one static task C that runs be-

fore a dynamic task D that spawns two dependent tasks D1

and D2. Task D precedes a module task composed of a task-

flow of two dependent tasks A and B.

! "

#

$% $& $ '()*+,-./01 %(2,34056(/373/8

9:;./01<($

*+,-./01 %(2,34056(/373/8

*+,-./01 &(2=0>(/373/8

Figure 3: An example of taskflow composition.

t f : : T askf low t a s k f l o w 1 , t a s k f l o w 2 ;

a u t o [A, B] = t a s k f l o w 1 . emplace (
[ ] ( ) { s t d : : c o u t << " TaskA " ; } ,

[ ] ( ) { s t d : : c o u t << " TaskB " ; }

) ;

a u t o [C , D] = t a s k f l o w 2 . emplace (

[ ] ( ) { s t d : : c o u t << " TaskC " ; } ,

[ ] ( t f : : Subf low& s f ) {

s t d : : c o u t << " TaskD " ;

a u t o [D1 , D2] = s f . emplace (
[ ] ( ) { s t d : : c o u t << "D1" ; } ,

[ ] ( ) { s t d : : c o u t << "D2" ; }

) ;

D1 . p r e c e d e (D2 ) ;

}

) ;

a u t o E = t a s k f l o w 2 . composed_of ( t a s k f l o w 1 ) ;

A. p r e c e d e (B ) ;

C . p r e c e d e (D ) ;
D. p r e c e d e (E ) ;

Listing 3: Cpp-Taskflow code of Figure 3.

Listing 3 shows the Cpp-Taskflow code of Figure 3. It de-

clares two taskflows, taskflow1 and taskflow2. The sec-

ond taskflow defines a module task that is composed of the

first taskflow, preceded by task D. A module task does not

own the taskflow but maintains a soft mapping to the task-

flow. Users can create multiple module tasks from the same

taskflow but they must not run concurrently. Figure 4 shows

an invalid taskflow composition, since the two module tasks

may race. Composition can be nested or recursive. Our run-

time is able to run each layer of taskflow hierarchies, regard-

less of static or dynamic tasking.

Taskflow: F2 Taskflow: F1

f2A

f2C

module [Taskflow: F1] module [Taskflow: F1]

f2B

f2D

f1A

f1C

f1B

Figure 4: An invalid taskflow composition. The two module

tasks composed of F1 may race.

3.4 Conditional Tasking

One major limitation of existing tasking frameworks is static

control flow. Most of their models are DAG-based. For task-

ing over sequences, we unroll fixed-length iterations stati-

cally. In case of nested or non-deterministic conditionals, we

resort to client-side control-flow decisions. To overcome this

limitation, we develop a powerful interface of conditional

tasking to support general control flow in task parallelism. A

condition task evaluates a set of instructions and returns the

next immediate successor to execute. Developers use condi-

tion tasks to implement branches or cycles, both static and

dynamic, to skip or iterate the execution of a subgraph. Our

conditional tasking is different from a dataflow graph, in the

sense that control-flow decisions are encoded as task depen-

dency uniformly with other tasks. Figure 5 gives an exam-

ple of two static tasks and three condition tasks (drawn in
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diamond shape). Each condition task returns a random bi-

nary value to indicate the subsequent execution path. The

expected number of condition tasks to execute before stop is

eight (a probability of 1/8).

init F1

1

F20

1

F3

0

1 stop
0

Figure 5: A dynamic control flow graph of three condition

tasks each flipping a binary coin to decide the next path. The

graph has 6 weak dependencies and 1 strong dependency.

a u t o [ i n i t , F1 , F2 , F3 , s t o p ] = t a s k f l o w . emplace (
[ ] ( ) { s t d : : c o u t << " i n i t " ; } ,

[ ] ( ) { r e t u r n rand ()%2 } ,

[ ] ( ) { r e t u r n rand ()%2 } ,

[ ] ( ) { r e t u r n rand ()%2 } ,

[ ] ( ) { s t d : : c o u t << " s t o p " ; }

) ;

i n i t . p r e c e d e ( F1 ) ;

F1 . p r e c e d e ( F2 , F1 ) ;
F2 . p r e c e d e ( F3 , F1 ) ;

F3 . p r e c e d e ( s top , F1 ) ;

Listing 4: Cpp-Taskflow code of Figure 5.

Listing 4 shows the Cpp-Taskflow code of Figure 5. Cre-

ating a condition task is similar to creating a static task, but

returns an integer index of which successor task to execute.

The index is defined with respect to the order of successors

defined in a condition task. For instance, condition task F3

precedes task stop and task F1. If the return value of F3 is

one, it loops back to task F1, or proceeds to task stop other-

wise.

3.4.1 Strong Dependency versus Weak Dependency

Condition tasks are powerful for making rapid control-flow

decisions across dependent tasks, but they are mistake-prone.

The preceding link coming out of a condition task is de-

fined as weak dependency (dashed lines in Figure 5), while

other links are strong dependency (solid lines in Figure 5).

When the executor receives a taskflow, the scheduler starts

with tasks of zero dependencies (both weak and strong depen-

dencies) and continues to execute successive tasks whenever

strong dependencies are met. However, the scheduler skips

this rule for a condition task and jumps directly to its suc-

cessor indexed by the return value. It is users’ responsibility

to condition a control-flow graph correctly. Users must in-

spect graphs using our execution logic to infer if task race is

possible, or ensure application algorithms properly disjoint

conditionals. For instance, the control flow of Figure 5 can

expand to a tree of tasks based on our execution logic. Each

path from the root to a leaf represents a possible execution

sequence, but none of them can overlap at the same time.

Error 1: no source Fix 1: add a source Error 2: race on D Fix2: add an auxiliary node

A 0

B

1

C

2

S

A 0

B

1

C

2

E

D

C

0

F

1

E

D

C

X

0

F

1

Figure 6: Common pitfalls of conditional tasking.

Figure 6 shows two common pitfalls of conditional task-

ing. The first example of three tasks has no source for the

scheduler to start with. A simple fix is to add a task of zero

dependencies. The second example may race on task D, if

the conditional of C returns zero at the same time task E fin-

ishes. A fix is to partition the control flow at C and D with

an auxiliary node X such that D is strongly conditioned by E

and X. The second example may be feasible if E implies F.

However, we do not recommend such a construct as it com-

plicates debugging.

3.5 Heterogeneous Tasking

Cpp-Taskflow supports heterogeneous tasking for users to ac-

celerate a wide range of computing programs by harnessing

the power of accelerators Each task class of Cpp-Taskflow

has a domain identifier indicating the target device (e.g., host,

CUDA) to run a task. Different domain tasks are stored uni-

formly using a variant construct. Our runtime is able to dis-

tinguish task domains and allocate scheduling resources ac-

cordingly.

3.5.1 Concurrent CPU-GPU Tasking

We enable CPU-GPU collaborative computing using graph-

based models. Developers describe a GPU workload as a task

graph rather than a sequence of single operations. Our GPU

tasking interface is referred to as cudaFlow. A cudaFlow

is a task in the GPU domain. It defines a set of methods

to construct a TDG of GPU operations such as data trans-

fers and kernel offloading. A cudaFlow spawns a GPU task

graph at its execution context for stateful parameter capture

and offloads GPU operations to one or many GPUs. Figure

7 gives an example of the canonical saxpy workload using

cudaFlow. The taskflow defines two static tasks, allocate_x

and allocate_y, to allocate GPU memory, and one cudaFlow

task to spawn a GPU TDG consisting of two host-to-device

(H2D) transfers, one saxpy kernel, and two device-to-host

(D2H) transfers.

_ _ g l o b a l _ _ vo id saxpy ( i n t n , i n t a , i n t ∗x , i n t ∗y ) ;

5



cudaFlow: saxpy

allocate_x

saxpy

allocate_y

h2d_x

saxpy

d2h_x

d2h_y

h2d_y

Figure 7: A saxpy (“single-precision A·X plus Y") task graph

using two CPU tasks and one cudaFlow task consisting of

one saxpy kernel and four data transfer tasks.

c o n s t u n s i g n e d N = 1 < <20;

s t d : : v e c t o r < f l o a t > hx (N, 1 . 0 f ) , hy (N, 2 . 0 f ) ;

f l o a t ∗dx { n u l l p t r } , ∗dy { n u l l p t r } ;

a u t o [ a l l o c a t e _ x , a l l o c a t e _ y ] = t a s k f l o w . emplace (
[ & ] ( ) { cudaMal loc (&dx , N∗ s i z e o f ( f l o a t ) ) ; }

[ & ] ( ) { cudaMal loc (&dy , N∗ s i z e o f ( f l o a t ) ) ; }

) ;

a u t o cudaf low = t a s k f l o w . emplace (

[& ] ( t f : : cudaFlow& c f ) {

a u t o h2d_x = c f . copy ( dx , hx . d a t a ( ) , N ) ;

a u t o h2d_y = c f . copy ( dy , hy . d a t a ( ) , N ) ;
a u t o d2h_x = c f . copy ( hx . d a t a ( ) , dx , N ) ;

a u t o d2h_y = c f . copy ( hy . d a t a ( ) , dy , N ) ;

a u t o k e r n e l = c f . k e r n e l (

(N+ 2 5 5 ) / 2 5 6 , 256 , 0 , saxpy , N, 2 . 0 f , dx , dy

) ;

k e r n e l . s u c c e e d ( h2d_x , h2d_y )

. p r e c e d e ( d2h_x , d2h_y ) ;

}
) ;

cudaf low . s u c c e e d ( a l l o c a t e _ x , a l l o c a t e _ y ) ;

Listing 5: Cpp-Taskflow code of Figure 7.

Listing 5 shows the Cpp-Taskflow code of Figure 7. The

code is self-explanatory. The cudaFlow task takes an argu-

ment of type tf::cudaFlow created by the scheduler passing

to the lambda that defines the GPU task graph. Users can cap-

ture parameters by reference to facilitate the decomposition

of CPU-GPU dependent tasks. For example, allocate_x

and allocate_y may overlap but they both precede the cud-

aFlow. Their changes on dx and dy are visible to the cud-

aFlow. Parameters to create a kernel task consist of the ex-

ecution configuration (grid, block, and shared memory) and

the kernel arguments. By default, all kernels are placed on

the same device of the cudaFlow. Users decide which kernel

goes to which device. An example is shown in Listing 6, with

two kernels on GPU 0 and 1, respectively. We do not handle

automatic GPU placement or live migration, which requires

another layer of memory abstraction, but focus on distribut-

ing GPU tasks based on the given layout.

t a s k f l o w . emplace ( [ & ] ( t f : : cudaFlow& c f ) {

c f . d e v i c e ( 0 ) ;

c f . k e r n e l ( g r i d , dim , 0 , k e r n e l 0 , d a t a 0 ) ;

c f . k e r n e l _ o n ( 1 , g r i d , dim , 0 , k e r n e l 1 , d a t a 1 ) ;

} ) ;

Listing 6: Multi-GPU programming with cudaFlow.

3.5.2 Abstraction for Heterogeneous Accelerators

Three advantages inspire the design of our cudaFlow inter-

face. The first advantage is abstraction. Users work at a suit-

able level of granularity for writing GPU operations that is

commensurate with their domain knowledge. Our runtime

sees the entire graph and performs platform-specific opti-

mization. For example, we leverage CUDA graph to launch

multiple dependent GPU operations using a single CPU call

to reduce overheads [8]. The second advantage is stateful

execution. Users describe GPU work with captured data to

form a stateful closure. Other tasks can alter referenced data

and make the change visible to the closure. Stateful execu-

tion improves not only the flexibility of our model, but also

facilitates overlap of CPU and GPU tasks. The third advan-

tage is extensibility. Users can extend the closure interface

to each unique heterogeneous domain and define, at a min-

imum, methods for (1) offloading a kernel to a device, (2)

allocating memory for buffers, and (3) transferring buffers to

and from host memory. Our runtime is able to arrange proper

scheduling resources for each domain task.

4 System Runtime and Scheduler

We leverage work stealing to design an efficient task executor

that is generalizable to arbitrary heterogeneous domains.

4.1 Work Stealing Basics

Work stealing is a dynamic scheduling strategy for multi-

threaded computer programs. It has been widely adopted

in both commercial and open-source software [6, 38, 39].

A common practice spawns multiple worker threads where

each worker iteratively drains out the tasks from its local

queue and transitions to a thief to steal a task from a ran-

domly selected peer called victim [17]. When a task com-

pletes, it submits new tasks from its immediate successors

whenever dependencies are met [14]. The scheduler loops

this procedure until the program terminates or no tasks are

available. Algorithm 1 shows the canonical work-stealing

loop proposed by Arora, Blumofe, and Plaxton (ABP for

short) [17]. Each worker switches back and forth between

an active worker that is executing a task and a thief that is

attempting to steal a task. When multiple steals happen at

the same task queue, only one may proceed. To mitigate the
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Algorithm 1: ABP_worker_loop(w)

Input: w: current worker

1 t← NIL;

2 while stop 6= true do

3 if t 6= NIL then

4 do

5 execute_task(w, t);

6 t← w.task_queue.pop();

7 while t 6= NIL;

8 end

9 yield();

10 v← randomly_select_a_worker();

11 t← v.task_queue.steal();

12 end

tension between aggressive thieves and wasted resources in-

curred by failed steals, ABP implements a yielding mecha-

nism.

For accelerator tasks, a common solution is to encapsulate,

for instance, a GPU operation in a CPU function and sched-

ule it as a normal CPU task or dedicate it to a set of GPU

workers [24, 25, 40]. It remains unclear which scheduler ar-

chitecture performs best under which worker management

strategy, and vice versa. Neither are they generalizable to ar-

bitrary heterogeneous domains.

4.2 Heterogeneous Work Stealing Challenges

The biggest challenge for achieving efficient heterogeneous

work stealing is worker management–with an aim of optimal

thread usage for executing a TDG. During the execution of

TDGs, a CPU task may submit both new CPU and GPU tasks

and vice versa whenever dependencies are met. The available

task parallelism changes dynamically, and there is no way

to predict next coming tasks especially under dynamic con-

trol flow. The scheduler must effectively balance the number

of working threads with dynamically generated tasks. Busy

waiting on tasks with a yielding mechanism is a common

framework to decrease the rate of oversubscribed steal at-

tempts [17]. However, this approach is not cost-efficient, be-

cause it relies on the operating system (OS) to blindly de-

cide which threads to relinquish the control over processors.

Sleep-based mechanism is another way to suspend the work-

ers frequently failing at steal attempts. A worker is put into

sleep by waiting for a condition variable to become true.

When the worker sleeps, OS can grant resources to other

threads for running useful jobs. Reducing wasteful steals can

improve the overall system performance, including latency,

throughput, and energy efficiency to a large degree [23].

However, deciding when and how to put workers to sleep,

wake up workers to run, and balance the numbers of work-

ers with dynamic task parallelism is notoriously difficult to

program correctly. We need to handle various challenges aris-

ing out of concurrency controls, notification of workers, and

heterogeneous coordination.

4.3 Architecture

At the architecture level, our scheduler maintains a separate

execution domain for each task. We keep a set of workers per

domain. A worker can only steal tasks of the same domain

from others. We develop an efficient algorithm to adapt the

number of workers to dynamically generated tasks. Our al-

gorithm can effectively prevent threads from being underuti-

lized and oversubscribed, thereby improving the overall sys-

tem performance to a large degree. Figure 8 shows the archi-

tecture of our work-stealing scheduler on two domains, CPU

and GPU. By default, the number of domain workers equals

the number of domain devices (e.g., CPU cores, GPUs). We

associate each worker with two separate task queues, a CPU

task queue (CTQ) and a GPU task queue (GTQ), and declare

a pair of CTQ and GTQ shared by all workers. The shared

CTQ and GTQ pertain to the scheduler and are primarily

used for external threads to submit TDGs. A CPU worker

can push and pop a new task into and from its local CTQ,

and can steal tasks from all the other CTQs; the structure is

symmetric to GPU workers. This separation allows a worker

to quickly insert dynamically generated tasks to the corre-

sponding slots without additional synchronization with other

workers.
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Figure 8: Architecture of our work-stealing scheduler on two

domains, CPU and GPU.

We leverage two state-of-the-art data structures, work-

stealing queue and event notifier, to support our scheduling

architecture. We implemented the task queue based on the

lock-free algorithm proposed by [35]. Only the queue owner

can pop/push a task from/into one end of the queue, while

multiple threads can steal a task from the other end at the

same time. Event notifier is a two-phase commit protocol

(2PC) that allows a worker to wait on a binary predicate in

a non-blocking fashion [5]. The idea is similar to the 2PC in
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distributed systems and computer networking. The waiting

worker first checks the predicate and calls prepare_wait

if it evaluates to false. The waiting worker then checks the

predicate again and calls commit_wait to wait, if the out-

come remains false, or cancel_wait to cancel the request.

Reversely, the notifying worker changes the predicate to true

and call notify_one or notify_all to wake up one or all

waiting workers. We develop one event notifier for each do-

main, based on Dekker’s algorithm packaged in the Eigen

library [4]. Details can be referred to [5].

4.4 Algorithm

At a high level, our algorithm keeps the per-domain invari-

ant, one worker is making steal attempts while an active

worker exists, unless all workers are active. We reach the

goal through an adaptive strategy–the last thief to become ac-

tive will wake up a worker to take over its thief role, and so

forth. External threads (non-workers) submit tasks through

the shared task queues and wake up workers to run tasks. No-

tice that our invariant is different from watchdog that always

keeps one thread busy in looking for tasks to avoid false par-

allelism in sleep-based design [23]. In case of no task paral-

lelism, the watchdog becomes waste. Our scheduler design

is object-oriented. The scheduler lives in an executor object

that manages a set of workers per domain and other tasking

details.

Algorithm 2: worker_loop(w)

Input: w: a worker

1 t← NIL;

2 while true do

3 exploit_task(w, t);

4 if wait_for_task(w, t) == false then

5 break;

6 end

7 end

Our scheduling algorithm is symmetric by domain.

Upon spawned, each worker enters the loop in Algorithm

2. The loop iterates two functions, exploit_task and

wait_for_task. Algorithm 3 implements the function

exploit_task. We use two scheduler-level arrays of atomic

variables, actives and thieves, to record for each domain

the number of workers that are actively exploiting tasks and

the number of workers that are making steal attempts, re-

spectively. Our algorithm relies on these atomic variables

to decide when to put a worker to sleep for reducing re-

source waste and when to bring back a worker for running

new tasks. Line 2:4 implements our adaptive strategy us-

ing two lightweight atomic operations. Notice that the order

of these two comparisons matters, as they are used to syn-

chronize with other workers in the later algorithms. Line 5:8

Algorithm 3: exploit_task(w, t)

Input: w: a worker (domain dw)

Input: t: a task

1 if t 6= NIL then

2 if AtomInc(actives[dw]) == 1 and thieves[dw]

== 0 then

3 noti f ier[dw].notify_one();

4 end

5 do

6 execute_task(w, t);

7 t← w.task_queue[dw].pop();

8 while t 6= NIL;

9 AtomDec(actives[dw]);

10 end

drains out the local task queue and executes all the tasks us-

ing execute_task in Algorithm 4. Before leaving the func-

tion, the worker decrements actives by one (line 10).

Algorithm 4: execute_task(w, t)

Input: w: a worker

Input: t: a task

Input: v: a visitor to the task variant

1 r← task_callable_visitor(t, v);

2 if r.has_value() then

3 submit_task(w, t.successors[r]);
4 return;

5 end

6 foreach s ∈ t.successors do

7 if AtomDec(s.strong_dependents) == 0 then

8 submit_task(w, s);

9 end

10 end

Algorithm 4 implements the function execute_task. The

key idea is to apply a visitor to the task variant (line 1). By

default, the visitor defines separate algorithms for five task

types, static task, dynamic task, module task, condition task,

and cudaFlow task, and it can be extended to custom acceler-

ator tasks. If the visitor returns a value, that is, a condition

task, we directly submit the task of the indexed successor

(line 2:5). Otherwise, we remove the task dependency from

all immediate successors and submit new tasks of zero strong

dependency (line 6:10). There are many framework-specific

details we do not cover due to space limit. One important

component is the detection of when a TDG completes, as con-

dition tasks may trigger nested and non-deterministic cycles.

We keep a local variable per worker to record the number of

executed tasks and an atomic variable per TDG (including

nested subflows) to track the number of submitted tasks. The

TDG completes when the total task count executed balances
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Algorithm 5: submit_task(w, t)

Input: w: a worker (domain dw)

Input: t: a task (domain dt)

1 w.task_queue[dt ].push(t);

2 if dw! = dt then

3 if actives[dt] == 0 and thieves[dt] == 0 then

4 noti f ier[dt ].notify_one();

5 end

6 end

off the submission number. The detail of submitting a task is

shown in Algorithm 5. The worker inserts the task into the

queue of the corresponding domain (line 1). If the task does

not belong to the worker’s domain (line 2), the worker wakes

up one worker from that domain if there is no active workers

or thieves (line 3:5). The function submit_task is internal

to the workers of an executor. External threads never touch

this call.

When a worker completes all tasks in its local queue, it pro-

ceeds to wait_for_task (line 4 in Algorithm 2), as shown

in Algorithm 6. At first, the worker enters explore_task to

make steal attempts (line 2). When the worker steals a task

and it is the last thief, it notifies a worker of the same do-

main to take over its thief role and returns to an active worker

(line 3:8). Otherwise, the worker becomes a sleep candidate.

However, we must avoid underutilized parallelism, since new

tasks may come at the time we put a worker to sleep. We use

2PC to adapt the number of active workers to available task

parallelism (line 9:35). The predicate in our 2PC is at least

one task queue, both local and shared, in the worker’s do-

main is nonempty. At line 8, the worker has drained out its

local queue and devoted much effort to stealing tasks. Other

task queues in the same domain are most likely to be empty.

We put this worker to a sleep candidate by submitting a wait

request (line 9). From now on, all the notifications from other

workers will be visible to this worker. Then, we inspect our

predicate by examining the shared task queue again (line

10:21), since external threads might have inserted tasks at

the same time we call prepare_wait. If the shared queue is

nonempty (line 10), the worker cancels the wait request and

makes an immediate steal attempt at the queue (line 11:12);

if the steal succeeds and it is the last thief, the worker goes

active and notifies a worker (line 13:17), or otherwise enters

the steal loop again (line 19). Now, the worker is almost to

sleep except if it is the last thief and: (1) an active worker in

its domain exists (line 23:26) or (2) at least one task queue

of the same domain from other workers is nonempty (line

27:32). The two conditions may happen because a task can

spawn tasks of different domains and trigger the scheduler

to notify the corresponding domain workers. Our 2PC guar-

antees the two conditions synchronize with line 2:4 in Algo-

rithm 3 and line 3:5 in Algorithm 5, and vice versa, prevent-

Algorithm 6: wait_for_task(w, t)

Input: w: a worker (domain dw)

Input: t: a task

Output: a boolean signal of stop

1 AtomInc(thieves[dw]);
2 explore_task(w, t);
3 if t 6= NIL then

4 if AtomDec(thieves[dw]) == 0 then

5 noti f ier[dw].notify_one();

6 end

7 return true;

8 end

9 noti f ier[dw].prepare_wait(w);

10 if task_queue[dw].empty() 6= true then

11 noti f ier[dw].cancel_wait(w);

12 t← task_queue[dw].steal();

13 if t 6= NIL then

14 if AtomDec(thieves[dw]) == 0 then

15 noti f ier[dw].notify_one();

16 end

17 return true;

18 else

19 goto Line 2;

20 end

21 end

22 if AtomDec(thieves[dw]) == 0 then

23 if actives[dw]> 0 then

24 noti f ier[dw].cancel_wait(w);

25 goto Line 1;

26 end

27 foreach worker x ∈W do

28 if x.task_queue[dw].empty() 6= true then

29 noti f ier[dw].cancel_wait(w);

30 goto Line 1;

31 end

32 end

33 end

34 noti f ier[dw].commit_wait(w);

35 return true;

ing the problem of undetected task parallelism. Passing all

the above conditions, the worker commits the request to wait

on our predicate (line 34).

Algorithm 7 implements explore_task. At each itera-

tion, the worker (thief) randomly selects a victim from all

workers (line 4). If the victim is the worker itself, it steals

a task of the same domain from the shared task queue (line

5), or from the victim (line 7). A steal may fail, when multi-

ple workers contend for the same queue. We use two param-

eters, MAX_STEALS and MAX_YIELDS, to control the tension

between how aggressively a thief steals a task, and when it

yields system resources to others (line 12:17). The motiva-
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Algorithm 7: explore_task(w, t)

Input: w: a worker (a thief in domain dw)

Input: t: an empty task

1 steals← 0;

2 yields← 0;

3 while true do

4 if v← random_worker(); v == w then

5 t← task_queue[dw].steal();

6 else

7 t← v.task_queue[dw].steal();

8 end

9 if t 6= NIL then

10 break;

11 else

12 if ++steals≥MAX_STEALS then

13 yield();

14 if ++yields == MAX_YIELDS then

15 break;

16 end

17 end

18 end

19 end

tion is to steal aggressively in the first few iterations avoid-

ing losing cores to other concurrent programs. In our exper-

iments, setting MAX_STEALS to twice the number of workers

and MAX_YIELDS to 100 produces decent and stable perfor-

mance.

Algorithm 8: submit_graph(g)

Input: g: a TDG to execute

1 foreach t ∈ g.source_tasks do

2 scoped_lock lock(queue_mutex);

3 dt ← t.domain;

4 task_queue[dt ].push(t);

5 noti f ier[dt ].notify_one();

6 end

Up to this time, we have discussed the core work-

stealing algorithm. To submit a TDG for execution, we call

submit_graph, shown in Algorithm 8. The caller thread in-

serts each task of zero dependencies to the shared task queues

and notifies a worker of the corresponding domain (line 4:5).

Shared task queues may be accessed by multiple callers and

are thus protected under a lock pertaining to the scheduler.

Our 2PC guarantees line 4:5 synchronizes with line 10:21

of Algorithm 6 and vice versa, preventing undetected paral-

lelism in which all workers are sleeping.

Theorem 1. Our work-stealing algorithm can correctly com-

plete the execution of a TDG.

Proof. Proving the correctness of our algorithm is equivalent

to showing that undetected task parallelism or leaky tasks

are not possible in our work stealing. There are two places

a new task is submitted, line 4 in Algorithm 8 and line 1 in

Algorithm 5. In the first place, where a task is pushed to the

shared task queue by an external thread, the notification (line

5 in Algorithm 8) is be visible to a worker in the same do-

main of the task for two situations: (1) if a worker has pre-

pared or committed to wait (line 9:34 in Algorithm 6), it will

be notified; (2) otherwise, at least one worker will eventu-

ally go through line 9:21 in Algorithm 6 to steal the task. In

the second place, where the task is pushed to the correspond-

ing local task queue of that worker, at least one worker will

execute it in either situation: (1) if the task is in the same

domain of the worker, the work itself may execute the task

in the subsequent exploit_task, or a thief steals the task

through explore_task; (2) if the worker has a different do-

main from the task (line 2 in Algorithm 5), the correctness

can be proved by contradiction. Assuming this task is unde-

tected, which means either the worker did not notify a corre-

sponding domain worker to run the task (false at the condi-

tion of line 3 in Algorithm 5) or notified one worker (line 4

in Algorithm 5) but none have come back. In the former case,

we know at least one worker is active or stealing, which will

eventually go through line 22:33 of Algorithm 6 to steal this

task. Similarly, the latter case is not possible under our 2PC,

as it contradicts the guarding scan in line 9:35 of Algorithm

6.

5 Experimental Results

We evaluate the performance of Cpp-Taskflow on two

fronts: micro-benchmark and realistic workloads, including

machine learning and VLSI design automation. The former

is to study tasking performance without much bias of appli-

cation algorithms, while the latter demonstrates the strength

of our system in real use cases. All experiments ran on a

Ubuntu Linux 5.0.0-21-generic x86 64-bit machine with 40

Intel Xeon Gold 6138 CPU cores at 2.00 GHz, 4 GeForce

RTX 2080 GPUs, and 256 GB RAM. We compiled all pro-

grams using Nvidia CUDA nvcc 10.1 on a host compiler of

GNU GCC-8.3.0 with C++14 standards -std=c++14 and op-

timization flags -O2 enabled. Each run of N CPU cores and

M GPUs corresponds to N CPU and M GPU worker threads.

All data is an average of ten runs.

5.1 Baseline

We consider oneTBB, StarPU, HPX, and OpenMP for the

baseline because of their extensive experience with users.

More importantly, their comprehensive documentations al-

low us to conduct fair performance study without making

mistakes due to undocumented pitfalls. Each baseline rep-

resents a specific programming paradigm. oneTBB (ver-
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sion 2020 U2) is an industrial-strength parallel program-

ming system under Intel oneAPI [6]. We consider its Flow-

Graph library and encapsulate each GPU task in a CPU

function. At the time of this writing, FlowGraph does not

have dedicated work stealing for TDGs. StarPU (version

1.3) is a CPU-GPU task programming system widely used

in the high-performance computing (HPC) community [18].

It provides a C-based syntax for writing TDGs on top of

a work-stealing runtime highly optimized for CPUs and

GPUs. HPX (version 1.4) is a C++ standard library for

concurrency and parallelism [32]. It supports implicit task

graph programming through aggregating future objects in a

dataflow API. OpenMP (version 4.5 in GCC toolchains) is

a directive-based programming framework for handling loop

parallelism [11]. It supports only static graph encoding using

task dependency clauses. A rather common approach is in-

stead to levelize the graph and propagate computations level

by level.

5.2 Micro-benchmark

We randomly generate a set of DAGs with equal distribution

of CPU and GPU tasks. Each task performs a simple vector

addition of 1K elements. For fair purposes, we use CUDA

Graph for all baselines. Table 1 summarizes the program-

ming effort of each method, measured by SLOCCount [13]

and SCC [12]. Cpp-Taskflow requires the least amount of

lines of code (LOC) and written tokens. The cyclomatic com-

plexity measured at a single function and the whole program

is also the smallest. It is important to investigate the over-

head of a task graph for finding the best granularity of an

algorithm. As shown in Table 2, the static size of a task,

compiled on our platform, is 272, 136, and 1472 bytes for

Cpp-Taskflow, oneTBB, and StarPU, respectively. We do not

report the data of HPX and OpenMP because they do not

have explicit task constructs at the functional level. The time

it takes for Cpp-Taskflow to create a task and add a depen-

dency is also faster than oneTBB and StarPU. We amortize

the time across 1M operations because all systems support

pooled memory to recycle tasks. We found StarPU has signif-

icant overhead in creating TDGs. The overhead always occu-

pies 5-10% of the total execution time regardless of the TDG

size.

Figure 9 shows the overall performance comparison be-

tween Cpp-Taskflow and the baseline at different TDG sizes.

In terms of runtime, Cpp-Taskflow outperforms others across

most data points. We complete the largest TDG by 1.61×,

1.44×, 1,53×, and 1.40× faster than oneTBB, StarPU, HPX,

and OpenMP, respectively. The memory footprint of Cpp-

Taskflow is higher than other methods, about 106–174 MB

more at the largest TDG, because our scheduler associates

each worker with a separate task queue per domain. The ben-

efit of such cost is significant speed gain and better worker

management that also improves other performance aspects.

Table 1: Programming Effort on Micro-benchmark

Method LOC #Tokens CC WCC #People Cost

Cpp-Taskflow 69 650 6 8 0.14 $1630

oneTBB 182 1854 8 15 0.27 $4515

StarPU 253 2216 8 21 0.34 $6354

HPX 255 2264 10 24 0.34 $6433

OpenMP 182 1896 13 19 0.27 $4515

CC: maximum cyclomatic complexity in a single function

WCC: weighted cyclomatic complexity of the program

People: estimated number of developers required

Cost: estimated cost to develop

Table 2: Overhead of Task Graph Creation

Method Stask Ttask Tedge ρ<10 ρ<5 ρ<1

Cpp-Taskflow 272 61 ns 14 ns 550 2550 35050

oneTBB 136 99 ns 54 ns 1225 2750 40050

StarPU 1472 259 ns 384 ns 7550 - -

Stask: static size per task in bytes

Ttask/Tedge: amortized time to create a task/dependency

ρv: graph size where its creation overhead is below v%
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Figure 9: Overall system performance at different problem

sizes using 40 CPUs and 4 GPUs.

We use the Linux perf tool to measure the power consump-

tion of all cores plus LLC (power/energy-pkg/). The to-

tal joules consumed by Cpp-Taskflow is consistently smaller

than the others, due to our adaptive worker control. Cpp-

Taskflow, oneTBB, and OpenMP are more power-efficient

than HPX and StarPU. The margin between Cpp-Taskflow

and StarPU continues to increase as we enlarge the TDG

size.

Figure 10 displays the runtime distribution of each method

over a hundred runs of two TDGs. The boxplot shows the
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Figure 10: Runtime distribution of two task graphs.

runtime of Cpp-Taskflow is more consistent than others. We

observed oneTBB has a wide variation in the small TDG. We

attribute this to the lack of a dedicated scheduling strategy for

GPU tasks, which leads to unbalanced parallelism and unpre-

dictable execution delay. Similar problems exist in OpenMP

as well.
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Figure 11: Throughput of corunning task graphs and CPU

utilization at different problem sizes under 40 CPUs and 4

GPUs.

We next compare the throughput of each method on corun-

ning TDGs. This experiment emulates a server-like envi-

ronment where multiple client programs run concurrently

on the same machine to compete for resources. The ef-

fect of worker management propagates to all simultaneous

parallel processes. We consider up to nine corun processes

each executing the same TDG of 20K tasks. We use the

weighted speedup to measure the system throughput, which

is the sum of the individual speedup of each process over a

baseline execution time [23]. A throughput of one implies

that the corun’s throughput is the same as if the processes

were run consecutively. Figure 11 compares the throughput

of each method and relates the result to the CPU utiliza-

tion. Both Cpp-Taskflow and oneTBB produce significantly

higher throughput than others. Our throughput is slightly bet-

ter than oneTBB by 1–15% except for seven coruns. The re-

sult can be interpreted by the CPU utilization plot, reported

by perf stat. We can clearly see both Cpp-Taskflow and

oneTBB make effective use of CPU resources to schedule

tasks. However, StarPU keeps threads busy most of the time

and has little adaptive control to balance thread resources

with dynamic task parallelism.

5.3 Large Sparse Neural Network Inference

We applied Cpp-Taskflow to solve the Large Sparse Deep

Neural Network (LSDNN) Inference Challenge, a recent ef-

fort aimed at driving progress in sparse AI analytics [34].

Each dataset is comprised of a sparse matrix Y , containing

the input data for the network, 1920 layers of neurons stored

in sparse matrices W s, truth categories, and the bias values

used for the inference. Preloading the network to the GPU is

impossible, and thus we implemented a task-based decompo-

sition algorithm inspired by [20,30]. A partial TDG is shown

in Figure 12. We created up to 4 cudaFlows on 4 GPUs. Each

cudaFlow contains thousands of GPU operations to run par-

titioned matrices in a data dispatching loop. Each condition

task is CPU-heavy in partitioning Y and scoring results. We

consider oneTBB and StarPU for the baseline, both of which

support explicit task constructs. Since they have no support

for conditional tasking, we unroll their TDGs across fixed-

length iterations found in hindsight.
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Figure 12: A partial TDG of 4 cudaFlows, 6 static tasks, and

8 conditioned cycles for the inference workload.

Table 3: Programming Effort on LSDNN Inference

Method LOC #Tokens CC WCC #People Cost

Cpp-Taskflow 281 1663 5 17 0.36 $7150

oneTBB 433 2200 10 22 0.41 $8917

StarPU 467 2845 12 25 0.50 $12171

CC: maximum cyclomatic complexity in a single function

WCC: weighted cyclomatic complexity of the program

People: estimated number of developers required

Cost: estimated cost to develop

Table 3 compares the programming effort between the

three implementations. Cpp-Taskflow has the least amount

of coding effort and program complexity, due to our cud-

aFlow interface and condition tasks. Figure 13 compares the

performance of solving a LSDNN of 1920 layers each of

4096 neurons under different CPU and GPU numbers. Cpp-

Taskflow outperforms oneTBB and StarPU in all aspects.
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Figure 13: Runtime and memory data of the LSDNN (1920

layers, 4096 neurons per layer) under different CPU and

GPU numbers

Both our runtime and memory scale better regardless of CPU

and GPU numbers. Using 4 GPUs, when performance satu-

rates at 4 CPUs, we do not suffer from further runtime growth

as StarPU, due to our adaptive work stealing. Our memory

usage is 1.5× and 1.6× fewer than oneTBB and StarPU, re-

spectively. This highlights the benefit of our condition task,

which encodes control-flow decisions directly in a cyclic

TDG rather than unrolling it statically across iterations.

5.4 VLSI Placement

We applied Cpp-Taskflow to solve a VLSI placement prob-

lem. The goal is to determine the physical locations of cells

(logic gates) in a fixed layout region using minimal inter-

connect wirelength. Figure 14 shows a placement layout of

an industrial design [45]. Modern placement typically in-

corporates hundreds of millions of cells and takes several

hours to finish [43]. To reduce the long runtime, recent work

started investigating new CPU-GPU algorithms. We consider

a matching-based hybrid CPU-GPU placement refinement al-

gorithm in DREAMPlace [43,44], that iterates the following

(see Figure 15): (1) a GPU-based maximal independent set

algorithm to identify cell candidates, (2) a CPU-based parti-

tion algorithm to cluster adjacent cells, and (3) a CPU-based

bipartite matching algorithm to find the best permutation of

cell locations. Each iteration contains overlapped CPU and

GPU tasks with nested conditions to decide the convergence.

Figure 16 shows a partial TDG of one iteration.

We implemented the hybrid CPU-GPU placement algo-

rithm using Cpp-Taskflow, oneTBB, and StarPU. The algo-

Figure 14: A placement layout and congestion map of the

industrial circuit, adaptec1 (211K cells and 221K nets) [45].
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Figure 15: An iterative matching-based placement algo-

rithm [43].
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Figure 16: A partial TDG of 4 cudaFlows, 1 conditioned cy-

cle, and 12 static tasks for one iteration of Figure 15.

rithm is crafted on one GPU and many CPUs. Since oneTBB

and StarPU have no support for nested conditions, we un-

13



Table 4: Programming Effort on VLSI Placement

Method LOC #Tokens CC WCC #People Cost

Cpp-Taskflow 677 4180 20 53 0.57 $15054

oneTBB 1000 6415 33 78 0.72 $21736

StarPU 1279 8136 41 90 0.87 $29686

CC: maximum cyclomatic complexity in a single function

WCC: weighted cyclomatic complexity of the program

People: estimated number of developers required

Cost: estimated cost to develop
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Figure 17: Runtime, memory, and power data of the circuit

adaptec1 (211K cells and 221K nets).

roll their TDGs across fixed-length iterations found in hind-

sight. Table 4 lists the programming effort of each method.

Cpp-Taskflow outperforms oneTBB and StarPU in all as-

pects. The whole program is 1.5× and 1.7× less complex

than that of oneTBB and StarPU, respectively. The overall

performance is shown in Figure 17. Using 8 CPUs and 1

GPU, Cpp-Taskflow is consistently faster than others across

all problem sizes (placement iterations). The gap becomes

clear at large problem size; at 100 iterations, Cpp-Taskflow

is 17% faster than oneTBB and StarPU. We observed similar

results using other CPU numbers. Performance saturates at

about 16 CPUs, primarily due to the inherent irregularity of
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Figure 18: Throughput of corunning placement workloads on

two problem sizes using 40 CPUs and 1 GPU.

the algorithm (see Figure 16). The memory footprint shows

the benefit of our conditional tasking. We keep nearly no

growth of memory when the problem size increases, whereas

StarPU and oneTBB grow linearly due to unrolled TDGs.

On a vertical scale, increasing the number of CPUs bumps

up the memory usage of all methods, but the growth rate of

Cpp-Taskflow is much slower than the others. In terms of en-

ergy, our scheduler is very power-efficient in completing the

placement workload, regardless of problem sizes and CPU

numbers. Beyond 16 CPUs where performance saturates, our

system does not suffer from increasing power as StarPU, due

to our adaptive work stealing.

For irregular TDGs akin to Figure 16, resource utilization

is critical to the system throughput. We corun the same pro-

gram by up to nine processes that compete for 40 CPUs and 1

GPU. Corunning a CAD program is very common for search-

ing the best parameters for an algorithm. Figure 18 plots the

throughput across nine coruns at two problem sizes. Both

Cpp-Taskflow and oneTBB achieve higher throughput than

StarPU. At the largest problem size, Cpp-Taskflow outper-

forms oneTBB and StarPU across all coruns. The result again

highlights the strength of our scheduler, which always adapts

the workers to available task parallelism.

5.5 VLSI Timing Analysis

We demonstrate the performance of Cpp-Taskflow in a real-

world VLSI timing analyzer. Efficient parallel timing analy-

sis is extremely challenging to design and implement, due

to large irregularity and graph-oriented computing. Figure

19 shows a timing analysis graph on an industrial design of

2M gates [26]. We consider our research project OpenTimer,

an open-source static timing analyzer that has been used in

many industrial and academic projects [28]. The first release

v1 in 2015 implemented the pipeline-based levelization algo-

rithm using the OpenMP 4.5 task dependency clause [28].

To overcome the performance bottleneck, we rewrote the

core incremental timing engine using Cpp-Taskflow in the re-

cent release v2. Since OpenTimer is a large project of more

than 50K lines of code, it is difficult to rewrite the code
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with other programming frameworks. We focus on compar-

ing with OpenMP which had been available in v1.

Figure 19: The timing graph of an industrial design [26].

Table 5: Software Cost of OpenTimer v1 and v2

Tool Task Model LOC CC Effort Dev Cost

v1 OpenMP 4.5 9,123 58 2.04 2.90 $275,287

v2 Cpp-Taskflow 4,482 20 0.97 1.83 $130,523

CC: maximum cyclomatic complexity in a single function

Effort: development effort estimate, person-years

Dev: estimated average number of developers

Cost: total estimated cost to develop

Table 5 measures the software costs of two OpenTimer

versions using the Linux tool SLOCCount under the organic

mode [13]. In OpenTimer v2, a large amount of exhaustive

OpenMP dependency clauses that were used to carry out task

dependencies are now replaced with only a few lines of flex-

ible Cpp-Taskflow code (9123 vs 4482). The maximum cy-

clomatic complexity in a single function is reduced from 58

to 20. We attribute this to Cpp-Taskflow’s programmability,

which can affect the way developers design efficient algo-

rithms and parallel decomposition strategies. For example,

OpenTimer v1 relied on a bucket-list data structure to model

the task dependency in a pipeline fashion using OpenMP.

We found it very difficult to go beyond this paradigm be-

cause of the insufficient support for dynamic dependencies

in OpenMP. With Cpp-Taskflow in place, we can break this

bottleneck and easily model both static and dynamic task

dependencies at programming time and runtime. The TDG

flows computations naturally and asynchronously with the

timing graph, producing faster runtime performance. Figure

20 shows a TDG used to carry out one iteration of incremen-

tal timing on a sample circuit.

Figure 21 compares the performance between OpenTimer

v1 and v2. We evaluated the runtime versus incremental iter-

ations under 16 CPUs on two industrial circuit designs tv80

(5.3K gates and 5.3K nets) and vga_lcd (139.5K gates and

139.6K nets) with 45nm NanGate cell library [26]. Each

incremental iteration refers a design modification followed

by a timing query to trigger a timing update. In v1, this in-

cludes the time to reconstruct the data structure required by

OpenMP to alter the task dependencies. In v2, this includes
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Figure 20: A TDG to carry out an iteration of timing update.

The graph consists of forward timing propagation tasks (in

white) and backward timing propagation tasks (in black).
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Figure 21: Runtime comparisons of the incremental timing

between OpenTimer v1 (OpenMP) and v2 (Cpp-Taskflow)

for two circuits, tv80 (34K tasks) and vga_lcd (0.8M tasks),

under 16 CPUs.

the time to create and launch a new TDG to perform a par-

allel timing update. As shown in Figure 21, v2 is consis-
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tently faster than v1. The maximum speed-up is 9.8× on

tv80 and 3.1× on vga_lcd. This also demonstrates the per-

formance of Cpp-Taskflow on batch jobs each consisting of

a different task pattern (average speed-up is 2.9× on tv80 and

2.0× on vga_lcd). The fluctuation of the curve is caused by

design modifiers; some are local changes and others affect

the entire timing landscape giving rise to large TDGs. The

scalability of Cpp-Taskflow is shown in Figure 22. We used

two million-scale designs, netcard (1.4M gates) and leon3mp

(1.2M gates) from the OpenCores [26], to evaluate the run-

time of v1 and v2 across different number of CPUs. There are

two important observations. First, v2 is slightly slower than

v1 at one CPU (3-4%), where all OpenMP’s constructs are

disabled. This shows the graph overhead of Cpp-Taskflow;

yet it is negligible. Second, v2 is consistently faster than v1

regardless of CPU counts except for one. This highlights

that Cpp-Taskflow’s programming model largely improves

the design of a parallel VLSI timing engine that would other-

wise not be possible with OpenMP.

6 Related Work

Heterogeneous programming system is one of the

main driving force to advance scientific computing [50].

Directive-based programming models such as OpenMP [11],

OmpSs [9], OpenMPC [37], OpenACC [10], and X-

Kaapi [25], allow users to augment program information

of loop mapping onto CPUs/GPUs and data sharing rules

to designated compilers for automatic parallel code genera-

tion. These models are good at loop-based parallelism but

cannot handle irregular compute patterns [36]. Functional

approaches such as StarPU [18], PaRSEC [21], oneTBB [6],

HPX [32], QUARK [52], XKAAPI++ [40], Fastflow [16],

Charm++ [33], and Kokkos [24] offer either implicit or ex-

plicit task graph constructs that are more flexible in runtime

control and on-demand tasking. Each of these systems has

its own pros and cons and dominates certain application

domains.

CPU-GPU co-scheduling plays a key role in heteroge-

neous programming systems. Work stealing is a popular strat-

egy to reduce the complexity of load balancing [17,40]. It has

inspired many systems such as Cilk++ [39], X10 [49], Nab-

bit [14], oneTBB [6], TPL [38], and Java runtime [7]. Most

progress were made for manycore CPU architectures. An

efficient counterpart for hybrid CPU-GPU or more general

heterogeneous systems remains demanding. A key challenge

is the worker management. Instead of keeping all workers

busy most of the time such as ABP [17] and StarPU [18],

both oneTBB [6] and BWS [23] have developed sleep-

based strategies. oneTBB employs a mixed strategy of fixed-

number worker notification, exponential backoff, and noop

assembly. BWS modifies OS kernel to alter the yield be-

havior. Other approaches such as A-Steal [15] targeting at a

space-sharing environment and HERMES [47] tuning hard-

ware frequency scaling have improved certain performance

aspects of work stealing in the CPU domain. However, how

to migrate the above approaches to a heterogeneous target

remains unknown.
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8 Conclusion

In this paper, we have introduced Cpp-Taskflow, a general-

purpose task programming system to streamline the cre-

ation of large and complex heterogeneous programs. Our pro-

gramming model enables developers to incorporate a broad

range of computational patterns with relative ease of pro-

gramming. We have developed an efficient runtime of het-

erogeneous work stealing that is generalizable to arbitrary

domains. Experimental results have demonstrated promis-

ing performance of Cpp-Taskflow over existing systems. As

an example, we have solved a large-scale VLSI placement

problem by up to 17% faster, 1.3× fewer memory, 2.1×
less power consumption, and 2.9× higher throughput using

1.9× fewer lines of code than two industrial-strength sys-

tems, oneTBB and StarPU, on a machine of 40 CPUs and

4 GPUs.

Cpp-Taskflow is a work in progress, and we are committed

to support trustworthy development for both academic and

industrial research projects using parallel computing. Our

experience with Cpp-Taskflow is encouraging. Many scien-

tific software developers are using Cpp-Taskflow in both pro-

totype and production, and Cpp-Taskflow is helping our re-

search colleagues to make new advances in scientific com-

puting, including VLSI design and machine learning. Cpp-

Taskflow is open in GitHub [1].
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